
Asymmetric Vinylogous Michael Reaction
of ¡,¢-Unsaturated Aldehyde with Buteno-4-lactone

Xiaoyan Luo, Zhiqiang Zhou, Feng Yu, Xin Li, Xinmiao Liang, and Jinxing Ye*
Engineering Research Centre of Pharmaceutical Process Chemistry, Ministry of Education, School of Pharmacy,

East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China

(Received February 14, 2011; CL-110123; E-mail: yejx@ecust.edu.cn)

The asymmetric vinylogous Michael reactions of ¡,¢-
unsaturated aldehydes with £-butenolide(buteno-4-lactone) were
efficiently catalyzed by the Jørgensen­Hayashi catalyst and
LiOAc. The desired products were obtained in satisfactory yields
with excellent enantioselectivities and moderate diastereoselec-
tivities.

Compounds containing a £-butyrolactone ring occur in
many natural products, which are of broad biological activities
such as antibacterial, anticancer, antivirus, and nonsteroidal
anti-inflammatory drugs.1 With the discovery of the potential
bioactivities and other uses of those compounds, the preparation
of them become a focus of attention.

Initially, intensive studies have been focused on the
applications of silyloxyfuran.2 Lewis acid-mediated asymmetric
Mukaiyama Aldol and Mannich reactions employing silyloxy-
furan and pyrrole have been well studied.2f,3 Furthermore,
MacMillan developed an enantioselective Mukaiyama­Michael
reaction of silyloxyfuran with aliphatic ¡,¢-unsaturated alde-
hyde affording chiral £-butenolide by MacMillan’s amine
catalyst.4 The direct reaction is highly valuable from the
standpoint of atom economy. Therefore, in recent years, the
intensive studies have been concentrated on the reactions of £-
butenolide and its derivatives.5 Moreover, Li and Wang realized
diastereo- and enantioselective organocatalytic direct Michael
addition of £-butenolide or its derivatives to chalcones.6 Our
group reported a general and direct organocatalytic asymmetric
vinylogous Michael reaction of £-butenolide with ¡,¢-unsat-
urated ketones catalyzed by a multifunctional primary amine
salt.7 Although great effort has been made for the vinylogous
reactions of ¡,¢-unsaturated system, the direct vinylogous
Michael reactions of £-butenolide to ¡,¢-unsaturated aldehyde
still remains a challenge due to the preference for 1,2-addition
over 1,4-addition. Moreover, there has been no report of the
direct vinylogous Michael reactions of £-butenolide to ¡,¢-
unsaturated aldehydes. This stimulated us to screen various
conditions to overcome the difficulties.

In this communication, we report the direct vinylogous
Michael reactions of £-butenolide to ¡,¢-unsaturated aldehydes
with high yields, excellent enantioselectivities, and moderate
diastereoselectivities, which are catalyzed by the Jørgensen­
Hayashi catalyst.8

We initially screened the conditions of direct vinylogous
Michael reactions of £-butenolide to ¡,¢-unsaturated aldehydes.
Since £-butenolides can easily isomerize into dienolates in the
presence of a mild base, we first conducted the reaction of
cinnamaldehyde (4a) and £-butenolide (5) in the presence of
pyrrolidine. To our delight, the reaction proceeded to 85% of
conversion (Table 1, Entry 1). This indicated that the direct

vinylogous Michael reactions could be efficiently promoted by
the base. We next carried out the reaction in the presence of the
chiral organocatalysts 2 and 3. However, inferior results were
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1d 1 MeOH None 85 1.6:1.0 0
2d 2a MeOH None 38 1.6:1.0 nd
3d 2b MeOH None 72 1.7:1.0 16
4d 3a MeOH None 93 3.0:1.0 87
5d 3b MeOH None 43 2.2:1.0 98
6e 3b MeOH Boc-L-Phe 55 1.9:1.0 98
7e 3b MeOH Boc-D-Phe 66 1.9:1.0 97
8e 3b MeOH PhCOOH 51 2.1:1.0 97
9e 3b MeOH PhCOOLi 70 2.4:1.0 97

10e 3b MeOH LiOAc 82 2.4:1.0 99
11 3b MeOH LiOAc 91 2.5:1.0 >99
12 3b EtOH LiOAc 68 1.9:1.0 95
13 3b DMF LiOAc 85 2.1:1.0 74
14 3b H2O LiOAc 47 2.2:1.0 99
15 3b MeCN LiOAc 21 2.2:1.0 nd
16 3b Toluene LiOAc 9 2.4:1.0 nd
17 3b CHCl3 LiOAc 13 2.6:1.0 nd
18 3b None LiOAc 50 2.5:1.0 99
19 3b MeOHf LiOAc 93 2.3:1.0 99
20 3b MeOHg LiOAc 89 2.6:1.0 99
aUnless otherwise noted, all reactions were performed with
3.0mmol of 4a, 1.0mmol of 5, 0.10mmol of catalyst, and
0.20mmol additive in 1.0mL solvent at room temperature for
30 h. bDetermined by 1HNMR of the crude product. cDeter-
mined by chiral GC (the data are for the major isomer)
d20mol% of organic catalyst was used and the reaction time
was 24 h. e20mol% of organic catalyst and 20mol% of
additive were used and the reaction time was 24 h. fThe
reaction was stirred in 0.5mL MeOH. gThe reaction was
stirred in 2.0mL MeOH.
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obtained catalyzed by 2 (Table 1, Entries 2 and 3). To our great
delight, up to 93% conversion with 87% ee and 3.0:1.0 dr were
obtained in the presence of 3a (Table 1, Entry 4). Catalyzed by
3b, excellent enantioselectivity (98%) with lower conversion
(43%) was obtained (Table 1, Entry 5). We next used catalyst 3b
in the presence of acidic and basic additives. Screening results
showed that the additives had a profound effect on the reaction
rate but both the diastereo- and enantioselectivity were not
remarkably effected (Table 1, Entries 6­10). For instance, Boc-
D-phenylglycine, Boc-L-phenylglycine, and benzoic acid were
introduced to produce the adducts with higher conversions and
similar dr and ee values (Table 1, Entries 6­8). This revealed
that acidic additive could not promote the reaction efficiently.
Gratifyingly, the reaction would become fast in the presence of
basic additive. The role of a mild base was proposed to shift the
keto­enol tautomeric equilibrium to the enolic form, which is
active for the nucleophilic reactions. With dr and ee values
maintained, lithium benzoate and lithium acetate would gave
70% and 82% conversion respectively (Table 1, Entries 9 and
10). Next, the catalyst loading was also taken into account.
Reducing the catalyst loading to 10mol%, up to 91%
conversion with 2.5:1.0 dr and >99% ee were obtained after
prolonged time (Table 1, Entry 11). A survey of different
reaction solvents revealed that methanol was the most suitable
solvent for this procedure. Performing the reaction in ethanol
and DMF would induce a slight decrease of conversion (Table 1,
Entries 12 and 13). However, the reaction in H2O, MeCN,
toluene, and CHCl3 would become sluggish (Table 1, Entries
14­17). Interestingly, up to 50% conversion with 2.5:1.0 dr and
99% ee could still be observed when the reaction was carried out
neat (Table 1, Entry 18). In addition, the amount of solvent was
also examined. Unfortunately, this variation did not bring any
improvement in the conversion and stereoselectivity (Table 1,
Entries 19 and 20).

Having identified the best reaction conditions, we next
explored the scope of the direct vinylogous Michael reactions of
£-butenolide to ¡,¢-unsaturated aldehydes.9 Under the opti-
mized conditions shown in Table 1, the reactions of a variety of
¡,¢-unsaturated aldehydes 4 with £-butenolide (5) were carried
out.10 Representative results are shown in Table 2. The addition
of £-butenolide to aromatic ¡,¢-unsaturated aldehydes gave
products in good to excellent yields with good to excellent
enantioselectivities and moderate diastereoselectivities (Table 2,
Entries 1­13). Especially, the major diastereomers all formed
with excellent enantioselectivities ranging from 93% to 98%.
The results also indicated that the yields afforded by electron-
donating groups were higher than those by electron-withdrawing
groups, while the position of the substituent groups on the
benzene ring have limited effect on stereoselectivity. Addition-
ally, the large 3-(2-naphthyl)acrylaldehyde was also explored
and the adduct was formed in 87% yield with 2.7:1.0 dr and
97/91% ee values (Table 2, Entry 14). Promising results were
also achieved from the addition of £-butenolide to aliphatic ¡,¢-
unsaturated aldehydes. Apart from (E)-pent-2-enal, the enantio-
selectivities of major diastereomers afforded by crotonaldehyde
and hexenal, were excellent (Table 2, Entries 15­18).

Comparing proton nuclear magnetic resonance (1HNMR)
spectra and optical rotation of the minor diastereomer 6r with
the literature data4a revealed that it was obtained as the (S,R)-
diastereomer. Thus, according to the mechanism of catalyst 3b

(Figure 1), the major diastereomer 6r is (S,S) absolute config-
uration.

In conclusion, an enantioselective vinylogous Michael
reactions of ¡,¢-unsaturated aldehydes with £-butenolide was

Table 2. Asymmetric vinylogous Michael reactions of
£-butenolide (5) to ¡,¢-unsaturated aldehydes 4
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1 Ph 94, 7a 2.2:1.0 98 (83)
2e 2-ClPh 71, 7b 1.6:1.0 93 (88)
3e 4-ClPh 77, 7c 2.2:1.0 95 (89)
4e 4-FPh 69, 7d 2.5:1.0 98 (88)
5e 4-BrPh 74, 7e 2.3:1.0 96 (84)
6 2-MePh 90, 7f 1.6:1.0 98 (96)
7 3-MePh 88, 7g 2.2:1.0 98 (100)
8 4-MePh 92, 7h 2.5:1.0 98 (87)
9 2-MeOPh 81, 7i 2.2:1.0 97 (88)

10 3-MeOPh 75, 7j 2.1:1.0 94 (83)
11 4-MeOPh 93, 7k 2.5:1.0 96 (84)
12 2, 3-diMeOPh 93, 7l 2.3:1.0 94 (97)
13 2, 4-diMeOPh 92, 7m 2.8:1.0 98 (92)
14 2-Naphthyl 87, 7n 2.7:1.0 97 (91)
15f Me 56, 6o 2g:1.0 94h (77h)
16f Et 43, 6p 2g:1.0 82h (84h)
17f Pr 57, 6q 2g:1.0 97h (86h)
18f i-Pr 68, 6r 2g:1.0 >99h (95h)
aUnless otherwise noted, all reactions were performed with
2.0mmol of 4, 1.0mmol of 5, 0.1mmol of 3b, and 0.20mmol
LiOAc in 1.0mL MeOH at room temperature for 36 h.
bIsolated yield of product after column chromatography.
cDetermined by the crude 1HNMR. dDetermined by chiral
HPLC (the data in parentheses is related to the minor isomer).
e20mol% of 3b and 30mol% LiOAc were used. f1.0mmol of
4 and 3.0mmol of 5 were used. gDetermined by GC with area
percentage. hDetermined by chiral GC with area percentage
(the data in parentheses is related to the minor isomer).
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Figure 1. Proposed catalytic cycle.
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efficiently developed. This approach serves as a powerful tool
for the synthetically chiral £-butenolide skeleton. The desired
products were obtained in high yields with excellent enantio-
selectivities and moderate diastereoselectivities.
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